Faculty by Alphabet

Publish Date:07.March 2016     Visted: Times       

Xiang-Jian Kong

Publish Date:01.March 2017     Visted: Times       

Phone/Fax: +86 (0) 592-2187879
E-mail: xjkong@xmu.edu.cn

Education:

Selected Recent Publications:

1)     Du, M.-H.; Dai, Y.; Jiang, L.-P.; Su, Y.-M.; Qi, M.-Q.; Wang, C.;* Long, L.-S.; Zheng, L.-S.; and Kong, X.-J.* Exploration and Insights on Topology Adjustment of Giant Heterometallic Cages Featuring Inorganic Skeleton Assisted by Machine Learning J. Am. Chem. Soc.  2023,145, 23188−23195.

2)     Li, C.-Y.; Xu, H.; Cheng, P.-M.; Du, M.-H.; Long, L.-S.; Zheng, L.-S.; and Kong, X.-J.* From Helices to Crystals: Multi-Scale Representation of Chirality in Double-Helix Structures J. Am. Chem. Soc. 2023, 145, 22176-22183.

3)     Chen, C.-L.; Wang, C.; Zheng, X.-Y.; Zhang, R.;* Xu, Y.; Zhuang, G.-L.; Long, L.-S.;Zheng, L.-S.;Kong, X.-J.* and Cao, Y* Conductive Lanthanide Metal-Organic Frameworks with Exceptionally High Stability J. Am. Chem. Soc. 2023, 145, 16983−16987.

4)     Wang, X.; Wang,; S.-Q.; Chen, J.-N.; Jia, J.-H.; Wang, C.; Paillot, K.; Breslavetz, I.; Long, L.-S.; Zheng, L.-S.; Rikken, G. L. J. A.; Train, C.; Kong, X.-J.* and Atzori, M.* Magnetic 3d-4f Chiral Clusters Showing Multi-Metal Site Magneto-Chiral Dichroism J. Am. Chem. Soc. 2022, 144, 8837–8847.

5)     Du, M.-H.; Chen, L.-Q.; Jiang, L.-P.; Liu, W.-D.; Long, L.-S.;Zheng, L.-S.; and Kong, X.-J.* Counterintuitive Lanthanide Hydrolysis-Induced Assembly Mechanism J. Am. Chem. Soc.2022, 144, 5653-5660.

6)     Du, M.-H.; Wang, D.-H.; Wu, L.-W.; Jiang, L.-P.; Li, J.-P.; Long, L.-S.;Zheng, L.-S.; and Kong, X.-J.* Hierarchical Assembly of Coordination Macromolecules with Atypical Geometries: Gd44Co28 Crown and Gd95Co60Cage Angew. Chem. Int. Ed. 2022, 61, e202200537;

7)     Du, M.-H.; Xu, S-H.; Li, G.-J.; Xu, H.; Lin, Y.; Liu, W.-D.; Long, L.-S.;Zheng, L.-S.; and Kong, X.-J.* Modification of Multi-Component Building Blocks for Assembling Giant Chiral Lanthanide–Titanium Molecular Rings Angew. Chem. Int. Ed. 2022, 61, e202116296.

8)     Pan, Z.-H.; Weng, Z.-Z.; Kong, X.-J.;* Long, L.-S.; and Zheng, L.-S. Lanthanide-containing clusters for catalytic water splitting and CO2 conversion Coord. Chem. Rev. 2022, 457, 214419;

9)     Chen, R.;Zhuang,G.-L.; Wang, Z.-Y.; Gao, Y.-J.; Li, Z.; Wang, C.; Zhou, Y.; Du, M.-H.; Zeng, S.; Long, L.-S.; Kong, X.-J.;* andZheng, L.-S. Integration of Bio-Inspired Lanthanide-Transition Metal Cluster and P-doped Carbon Nitride for Efficient Photocatalytic Overall Water Splitting Natl. Sci. Rev 2021, 8, nwaa234.

10)  Du, M.-H.; Zheng, X.-Y.; Kong, X.-J.;* Long, L.-S.;* Zheng, L.-S. Synthetic Protocol for Assembling Giant Heterometallic Hydroxide Clusters from Building Blocks: Rational Design and Efficient Synthesis Matter 2020, 3, 1334–1349.

11)  Zheng, X.-Y.; Xie, J.; Kong, X.-J.;* Long, L.-S.;* Zheng, L.-S. Recent advances in the assembly of high-nuclearity lanthanide clusters. Coord. Chem. Rev. 2019, 378222-236;

12) Chen, R.; Yan, Z-H.; Kong, X.-J.;* Long, L.-S.; Zheng, L.-S. Integration of Lanthanide–Transition-Metal Clusters onto CdS Surfaces for Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2018, 57, 16796 –16800;

13) Yan, Z-H.; Du, M.-H.; Liu, J.; Jin, S.; Wang, C.; Zhuang, G.L.; Kong, X.-J.;* Long, L.-S.; Zheng, L.-S. Photo-generated dinuclear {Eu(II)}2active sites for selective CO2 reduction in a photosensitizing metal-organic frameworkNat. Commun.2018, 9,3353;

14) Zheng, H.; Du, M-H.; Lin, S-C.; Tang, Z.-C.; Kong, X.-J.;* Long, L.-S.;* Zheng, L.-S. Assembly of Wheel-Like Eu24Ti8 Cluster under the Guidance of High Resolution Electrospray Ionization Mass Spectrometry Angew. Chem. Int. Ed. 2018,57, 10976 –10979;

15)  Zheng, X.-Y.; Kong, X.-J.;* Zheng, Z.;* Long, L.-S.;* Zheng, L.-S. High-Nuclearity Lanthanide-Containing Clusters as Potential Molecular Magnetic Coolers Acc. Chem. Res. 2018. 51, 517−525;

16) Zheng, X.-Y.; Jiang, Y.-H.; Zhuang, G.-L.; Liu, D.-P.; Liao, H.-G.; Kong, X.-J.;* Long, L.-S.;* Zheng, L.-S. A Gigantic Molecular Wheel of {Gd140}: A New Member of the Molecular Wheel Family. J. Am. Chem. Soc. 2017, 139, 18178−18181;

17) Zheng, X.-Y.; Zhang, H.; Wang, Z. X.; Liu, P. X.; Du, M. H.; Han, Y. Z.; Wei, R. J.; Ouyang, Z. W.; Kong, X.-J.;* Zhuang,G.-L.;* Long, L.-S.;* Zheng, L.-S. Insight into Magnetic Interaction in Monodisperse Gd12Fe14 Metal Cluster. Angew. Chem. Int. Ed. 2017, 56, 1147511479;

18) Kong, X.-J.; Lin, Z.; Zhang, Z.-M.; Zhang, T.; Lin, W. B.*Hierarchical Integration of Photosensitizing Metal–Organic Frameworks and Nickel-Containing Polyoxometalates for Efficient Visible-Light-Driven Hydrogen Evolution. Angew. Chem. Int. Ed. 2016, 55, 6411–6416;

19) Liu, D.-P.; Lin,X.-P.; Zhang, H.; Zheng, X.-Y.; Zhuang,G.-L.;*Kong, X.-J.;* Long, L.-S.;* Zheng, L.-S. Magnetic Properties of a Single-Molecule Lanthanide–Transition-Metal Compound Containing 52 Gadolinium and 56 Nickel Atoms Angew. Chem. Int. Ed.2016,55, 4532–4536.

20) Peng, J.-B.; Kong, X.-J.;* Zhang, Q.-C.; Orendáč, M.Prokleška, J. Ren, Y.-P.; Long, L.-S.;* Zheng, Z.-P.; Zheng, L.-S. Beauty, Symmetry, and Magnetocaloric Effect-Four-Shell Keplerates with 104 Lanthanide AtomsJ. Am. Chem. Soc. 2014, 136, 17938-17941.

21) Zhan, W.-W.; Kuang, Q.;* Zhou, J.-Z.; Kong, X.-J.;* Xie, Z.-X.; Zheng, L.-S. Semiconductor @ metal-organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response J. Am. Chem. Soc. 2013, 135, 1926-1933,

22) Peng, J.-B.; Zhang, Q.-C.; Kong, X.-J.;* Zheng, Y.-Z.; Ren, Y.-P.; Long, L.-S.;* Huang, R.-B.; Zheng, L.-S. Zheng, Z.-P. High-Nuclearity 3d−4fClusters as Enhanced Magnetic Coolers and Molecular Magnets J. Am. Chem. Soc. 2012,134, 3314−3317Highlighted by Quantum Molecular Magnetsvirtual issue

23)  Peng, J.-B.; Zhang, Q.-C.; Kong, X.-J.;* Ren, Y.-P.; Long, L.-S.;* Huang, R.-B.; Zheng, L.-S. Zheng, Z.-P. A 48-Metal Cluster Exhibiting a Large Magnetocaloric Effect. Angew. Chem. Int. Ed. 2011, 50, 10649 –10652.

24)  Zhao, H.-X.; Kong, X.-J.; Li, H.; Jin, Y.-C. Long, L.-S.;* Zeng, X. C.;* Huang, R.-B.; Zheng, L.-S. Transition from one-dimensional water to ferroelectric ice within a supramolecular architectureProc. Natl. Acad. Sci. USA. 2011. 108, 3481-3486 (H.-X.Z., X.-J.K.,and H.L.contributed equally).

25)  Kong, X.-J.; Long, L.-S.;* Zheng, Z.-P.* Huang, R.-B.; Zheng, L.-S. Keeping the Ball Rolling: Fullerene-like Molecular Clusters Acc. Chem. Res. 2010.43, 201-209.

26)  Kong, X.-J.; Wu, Y.-L; Long, L.-S.;* Zheng, L.-S.; Zheng, Z.-P.* A 60-Metal Sodalite Cage Constructed by 24 Vertex-sharing [Er4(μ3-OH)4] Cubanes J. Am. Chem. Soc. 2009, 131, 6918-6919.

27) Kong, X.-J.; Ren, Y.-P.; Chen, W.-X.; Long, L.-S.;* Zheng, Z.-P.;* Huang, R.-B.; Zheng, L.-S. A Four-Shell, Nesting Doll-like 3d–4fCluster Containing 108 Metal Ions Angew. Chem. Int. Ed. 2008, 47, 2398-2401Highlighted by NatureChina.

28) Kong, X.-J.; Ren, Y.-P.; Long, L.-S.;* Zheng, Z.-P.;* Huang, R.-B.; Zheng, L.-S. A Keplerate Magnetic Cluster Featuring an Icosidodecahedron of Ni(II) Ions Encapsulating a Dodecahedron of La(III) Ions J. Am. Chem. Soc., 2007, 129, 7016-7017Highlighted by NatureNature Nanotechnology and C&EN.



Print】【Close

Pre Member:Shunliu Deng
Next Member:Yuan-Zhi TAN
Baidu
sogou